Skip to main content

ThermoKarst

Un­der­ground ca­vi­ties are a fra­gile eco­sys­tem in which bio­geo­che­mi­cal pro­cesses are high­ly de­pendent on tem­pe­ra­ture. They al­so contain unique traces of their past en­vi­ron­ment, the in­ter­pre­ta­tion of which is clo­se­ly de­pendent on tem­pe­ra­ture.

In recent years, ma­ny stu­dies have fo­cu­sed on spe­leo­thems, se­con­da­ry car­bo­nate for­ma­tions such as sta­lag­mites and sta­lag­mi­tic flows, be­cause of their abi­li­ty to ar­chive pa­laeoen­vi­ron­men­tal in­for­ma­tion that can be da­ted with pre­ci­sion over the last 0.5 Ma or so. Se­ve­ral me­cha­nisms, in­clu­ding ther­mal dif­fu­sion in the be­drock and ad­vec­tion by wa­ter and air, trans­fer heat from the ou­ter sur­face to the ca­vi­ty. De­pen­ding on the re­la­tive im­por­tance of these dif­ferent flows, the un­der­ground tem­pe­ra­ture will be more or less at­te­nua­ted and out of phase in res­ponse to tem­po­ral va­ria­tions in the out­side tem­pe­ra­ture.

Un­ders­tan­ding the ther­mal res­ponse of karst to cli­mate change is the­re­fore fun­da­men­tal to quan­ti­fying dissolution/precipitation rates, in­ter­pre­ting the geo­che­mi­cal va­ria­tions ob­ser­ved in concre­tions and as­ses­sing the im­pact on li­ving or­ga­nisms in caves.


Ba­sed on the li­te­ra­ture, we have for­mu­la­ted three hy­po­theses that we will seek to va­li­date in the pro­ject:
  1. Ven­ti­la­tion of kars­tic mas­sifs is a do­mi­nant me­cha­nism for heat trans­fer

  2. The reac­tion time of mas­sifs and caves de­pends main­ly on ad­vec­tive flows (wa­ter and air), ra­ther than on heat conduc­tion in the rock.

  3. Heat ex­change is suf­fi­cient to pro­duce a si­gni­fi­cant quan­ti­ty of conden­sa­tion wa­ter to re­charge kars­tic sys­tems, at least un­der cer­tain condi­tions.

The aim of the pro­ject is to car­ry out an in-depth ana­ly­sis of mass and heat trans­fer in karst sys­tems in or­der to ans­wer these ques­tions. In par­ti­cu­lar, we want to cha­rac­te­rise the conse­quences of cli­mate change on the un­der­ground en­vi­ron­ment and de­ter­mine the ther­mal res­ponse of a ca­vi­ty on dif­ferent spa­tial and tem­po­ral scales. We will de­ve­lop a sim­pli­fied glo­bal mo­del of kars­tic mas­sifs made up of se­ve­ral sub-sys­tems (rock, conduit, epi­karst, etc.). Heat trans­fer by conduc­tion and ad­vec­tion (wa­ter and air) in the rock and conduits will be ful­ly cou­pled. Ho­we­ver, the ef­fects of na­tu­ral ven­ti­la­tion in the caves and of the epi­karst are not cur­rent­ly well quan­ti­fied, ma­king their mo­del­ling ris­ky. Field mea­su­re­ments will the­re­fore be car­ried out in pa­ral­lel with the si­mu­la­tions.

To achieve this ob­jec­tive, the pro­ject re­lies on two teams with com­ple­men­ta­ry skills, one spe­cia­li­sing in the mo­ni­to­ring and concep­tua­li­sa­tion of kars­tic sys­tems (SISKA), the other in heat and mass trans­fer (FAST). These two as­pects will the­re­fore be dealt with in pa­ral­lel. Ini­tial­ly, a pa­ra­me­tric stu­dy (ini­tial mo­del) will be car­ried out using sim­pli­fied ana­ly­ti­cal mo­dels to es­ti­mate the ma­gni­tude of the res­pec­tive pro­cesses un­der dif­ferent condi­tions. This will en­able the de­ve­lop­ment of the first nu­me­ri­cal mo­del (part 1) and field da­ta ac­qui­si­tion (part 2). The two com­po­nents will be syn­the­si­sed ite­ra­ti­ve­ly throu­ghout the re­search pro­gramme, en­abling the three hy­po­theses to be dis­cus­sed at the project's conclu­sion. Two main sites will be ins­tru­men­ted, in­clu­ding the Mi­landre un­der­ground la­bo­ra­to­ry where a large amount of da­ta is al­rea­dy avai­lable. The sites will be mo­ni­to­red for tem­pe­ra­ture and for the main pa­ra­me­ters control­ling mass trans­fer: air and wa­ter flows, using di­rect (flow rates) and in­di­rect (CO2 and ra­don) mea­su­re­ments.

A team of two PhD stu­dents is plan­ned to de­ploy the mo­ni­to­ring in the field and de­ve­lop the skills and si­mu­la­tion tools nee­ded for the pro­ject. Ex­pe­rien­ced re­sear­chers from SISKA and FAST will ac­ti­ve­ly sup­port the PhD stu­dents to es­ta­blish the pro­ce­dures, de­ve­lop the skills and make the de­ci­sions nee­ded to solve the chal­lenges that will arise.

This pro­ject will un­doub­ted­ly pro­vide new in­for­ma­tion on the res­ponse of kars­tic mas­sifs to cli­mate change, on the ven­ti­la­tion of mas­sifs and on the im­por­tance of conden­sa­tion in re­char­ging aqui­fers.

The re­sults of the pro­ject will al­so pro­vide es­sen­tial da­ta for other fields: drin­king wa­ter sup­ply (tem­pe­ra­ture va­ria­tions in kars­tic springs), pu­blic health (ra­don ex­ha­led in dwel­lings), spe­leo­ge­ne­sis (conden­sa­tion cor­ro­sion), per­ma­frost (na­tu­ral gla­ciers), low-tem­pe­ra­ture geo­ther­mal ener­gy (ef­fect of conduits on heat ex­change), tun­nel­ling and mi­ning (pre­dic­tion of voids and mas­sive wa­ter in­tru­sions), re­mote sen­sing (in­ter­pre­ta­tion of ther­mal ano­ma­lies), cave conser­va­tion (pro­tec­tion of ar­chaeo­lo­gi­cal and tou­rist caves), the car­bon cycle (dis­so­lu­tion and pre­ci­pi­ta­tion of car­bo­nates are control­led by pCO2, and the­re­fore by ven­ti­la­tion), sub­ter­ra­nean bio­lo­gy (sub­ter­ra­nean bio­topes...), etc.

The re­sults of this pro­ject will be­come a key step in un­ders­tan­ding heat trans­fer in car­bo­nate rocks.

Link to the SNSF Ther­mo­karst page

PHD Students


Contact

Amir Se­da­ghat­kish
Send e-mail


Contact

Clau­dio Pas­tore
Send e-mail

PIs

Pierre-Yves Jean­nin (ISSKA), Fré­dé­ric Dou­menc (Sor­bonne), Marc Luet­scher (ISSKA).

Publications

Se­da­ghat­kish A., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Mo­de­ling the ef­fect of free convec­tion on per­ma­frost mel­ting rates in fro­zen rock-clefts. The Cryos­phere, 18, 4547-4565, doi.org/10.5194/tc-18-4547-2024

Pas­tore C., Se­da­ghat­kish A., Schmid N., We­ber E., Luet­scher M., 2024. Mo­ni­to­ring air fluxes in caves using di­gi­tal flow me­ters. In­ter­na­tio­nal Jour­nal of Spe­leo­lo­gy, 53, 63-73. doi.org/10.5038/1827-806X.53.1.2500

Se­da­ghat­kish A., Pas­tore C., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Mo­del­ling heat trans­fer for as­ses­sing the convec­tion length in ven­ti­la­ted caves. Jour­nal of Geo­phy­si­cal Re­search: Earth Sur­face129, e2024JF007646. doi.org/10.1029/2024JF007646

Pas­tore C., We­ber E., Dou­menc F., Jean­nin PY., Luet­scher M., 2024. Dis­per­sion of ar­ti­fi­cial tra­cers in ven­ti­la­ted caves. In­ter­na­tio­nal Jour­nal of Spe­leo­lo­gy, 53(1), 51-62. doi.org/10.5038/1827-806X.53.1.2497

Ga­ra­gnon J., Luet­scher M.We­ber E., 2022. Ven­ti­la­tion re­gime in a kars­tic sys­tem (Mi­landre Cave, Swit­zer­land). Kars­to­lo­gia Me­moirs, 23, 187-19

en_GBEN